import { Geometry } from './Geometry.js';
import { BufferAttribute } from './BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
/**
* Creates a torus knot, the particular shape of which is defined by a pair of coprime integers, p and q.
* If p and q are not coprime, the result will be a torus link.
* @constructor
* @memberof zen3d
* @extends zen3d.Geometry
* @param {number} [radius=1] — Radius of the torus. Default is 1.
* @param {number} [tube=0.4] — Radius of the tube. Default is 0.4.
* @param {Integer} [tubularSegments=64] — Default is 64.
* @param {Integer} [radialSegments=8] — Default is 8.
* @param {Integer} [p=2] — This value determines, how many times the geometry winds around its axis of rotational symmetry. Default is 2.
* @param {Integer} [q=3] — This value determines, how many times the geometry winds around a circle in the interior of the torus. Default is 3.
*/
function TorusKnotGeometry(radius, tube, tubularSegments, radialSegments, p, q) {
Geometry.call(this);
// this.type = 'TorusKnotGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
radius = radius || 1;
tube = tube || 0.4;
tubularSegments = Math.floor(tubularSegments) || 64;
radialSegments = Math.floor(radialSegments) || 8;
p = p || 2;
q = q || 3;
// buffers
var indices = [];
var vertices = [];
var normals = [];
var uvs = [];
// helper variables
var i, j;
var vertex = new Vector3();
var normal = new Vector3();
var P1 = new Vector3();
var P2 = new Vector3();
var B = new Vector3();
var T = new Vector3();
var N = new Vector3();
// generate vertices, normals and uvs
for (i = 0; i <= tubularSegments; ++i) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
var u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve(u, p, q, radius, P1);
calculatePositionOnCurve(u + 0.01, p, q, radius, P2);
// calculate orthonormal basis
T.subVectors(P2, P1);
N.addVectors(P2, P1);
B.crossVectors(T, N);
N.crossVectors(B, T);
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for (j = 0; j <= radialSegments; ++j) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
var v = j / radialSegments * Math.PI * 2;
var cx = -tube * Math.cos(v);
var cy = tube * Math.sin(v);
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
vertex.x = P1.x + (cx * N.x + cy * B.x);
vertex.y = P1.y + (cx * N.y + cy * B.y);
vertex.z = P1.z + (cx * N.z + cy * B.z);
vertices.push(vertex.x, vertex.y, vertex.z);
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors(vertex, P1).normalize();
normals.push(normal.x, normal.y, normal.z);
// uv
uvs.push(i / tubularSegments);
uvs.push(j / radialSegments);
}
}
// generate indices
for (j = 1; j <= tubularSegments; j++) {
for (i = 1; i <= radialSegments; i++) {
// indices
var a = (radialSegments + 1) * (j - 1) + (i - 1);
var b = (radialSegments + 1) * j + (i - 1);
var c = (radialSegments + 1) * j + i;
var d = (radialSegments + 1) * (j - 1) + i;
// faces
indices.push(a, b, d);
indices.push(b, c, d);
}
}
// build geometry
this.setIndex(indices);
this.addAttribute('a_Position', new BufferAttribute(new Float32Array(vertices), 3));
this.addAttribute('a_Normal', new BufferAttribute(new Float32Array(normals), 3));
this.addAttribute('a_Uv', new BufferAttribute(new Float32Array(uvs), 2));
this.computeBoundingBox();
this.computeBoundingSphere();
// this function calculates the current position on the torus curve
function calculatePositionOnCurve(u, p, q, radius, position) {
var cu = Math.cos(u);
var su = Math.sin(u);
var quOverP = q / p * u;
var cs = Math.cos(quOverP);
position.x = radius * (2 + cs) * 0.5 * cu;
position.y = radius * (2 + cs) * su * 0.5;
position.z = radius * Math.sin(quOverP) * 0.5;
}
}
TorusKnotGeometry.prototype = Object.create(Geometry.prototype);
TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;
export { TorusKnotGeometry };